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A Value-at-Risk based model is proposed to compute the adequate equity capital necessary to
cover potential losses due to operational risks, such as human and system process failures, in bank-
ing organizations. Exploring the analogy to a lattice gas model from physics, correlations between
sequential failures are modeled by as functionally defined, heterogeneous couplings between mutu-
ally supportive processes. In contrast to traditional risk models for market and credit risk, where
correlations are described by the covariance of Gaussian processes, the dynamics of the model shows
collective phenomena such as bursts and avalanches of process failures.
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I. INTRODUCTION

Risk management has become increasingly im-
portant in financial institutions over the last
decade. Since the publication of JP Morgan’s
RiskMetricsTM [1] in the nineties, Risk Man-
agement and Risk Control departments in
banks have grown significantly in size and im-
portance. The task is to fulfill regulatory re-
quirements, to add transparency about a bank’s
risk profile by a quantitative assessment of
risks, to develop the necessary IT-solutions
which allow to process the huge amount of data
of a bank, and, finally, to integrate this infor-
mation in a risk-return (RoRAC = Return on
Risk-Adjusted Capital) based steering process
of the bank. Ultimately, a proper risk man-
agement and risk control process is recognized
by rating agencies and investors so that share-
holder value is added to the bank.

Banks first focused on controlling potential
losses due to market fluctuation, such as
changes in the S&P 500 stock index, changes in
interest and currency exchange rates, which is
termed market risk. Internal market risk mod-
els are nowadays rather matured and accepted
by regulators for the calculation of the required
capital to be held as buffer against such losses.
In contrast to these elaborated statistical mod-
els for market risks, credit risks (i.e., risks due
to defaulted obligors) have to be covered by
simply 8% capital of the bank’s risk-weighted

∗The views presented in this paper are those of the au-
thors and do not necessarily represent models or policies
of Dresdner Bank AG.

assets. Implicitly, this charge also includes other
risks such as operational risks. Since the New
Basel Accord on Capital Adequacy issued by
the Basel Committee on Banking Supervision
in February and September 2001 [2, 3, 4],
known as Basel II, it is clear that regulators will
demand banks to hold equity capital against
operational risks explicitly.

A common industry definition of operational
risk (OR) is the risk of direct or indirect losses
resulting from inadequate or failed internal pro-
cesses, people and systems or from external
events [5]. See [6] for a practice-oriented in-
troduction to the issue. Possible OR-risk cat-
egories are [6]: (i) human processing errors,
e.g., mishandling of software applications, re-
ports containing incomplete information, or
payments made to incorrect parties without re-
covery, (ii) human decision errors, e.g., unnec-
essary rejection of a profitable trade or wrong
trading strategy due to incomplete informa-
tion, (iii) (software or hardware) system errors,
e.g., data delivery or data import is not exe-
cuted and the software system performs calcu-
lations and generates reports based on incom-
plete data, (iv) process design error, e.g., work-
flows with ambiguously defined process steps,
(v) fraud and theft, e.g., unauthorized actions
or credit card fraud, and (vi) external damages,
e.g., fire or earthquake.

Thinking of theses categories as “operational
risk processes” it is clear that there are func-
tionally defined dependencies between individ-
ual processes, which all together bring a big or-
ganization to work. Consider the following ex-
ample for illustration: a system error leads to
an incomplete data import into a risk calcula-



tion engine, resulting in a wrong calculation of
risk figures, and eventually to a human decision
error by the trader, who closes a possibly prof-
itable position unnecessarily to reduce a risk
which in fact does not exist.

In the end misleading or lagging information,
or system and workflow failures will always re-
sult in financial loss for a bank. Indeed, prac-
titioners have recognized these dependencies in
operational risk events and mandated units like
the internal audit and risk control departments
to control processes for the bank, and generated
functions like a Chief Operating Officer (COO)
to optimize them. Operational risk error trees
between the above categories have been formal-
ized in [6] in more detail.

Since the mid nineties financial markets have
also attracted physicists in academia. One of
the main reason is that financial time series ex-
hibit several statistical peculiarities, many of
them being common to a wide variety of dif-
ferent markets and instruments. As such they
could possibly be “universal”, i.e., independent
of market details like instruments, country, and
currency, and be the signature of collective phe-
nomena in financial markets (see [7, 8, 9, 10, 11]
and references therein). Collective phenomena
have been widely studied in physics in the con-
text of phase transitions. Collective phenomena
are often responsible for insensitivity of over-
all system behavior to details of an underlying
dynamics. Specifically at phase transitions they
give rise to power-law behavior, scale-invariance
and self-similarity. Similar properties of finan-
cial time series might therefore well be under-
stood as a consequence of agents in a market
acting collectively.

Bringing together ideas from physics about col-
lective phenomena and best industry practice
for risk measurement the present paper details
a possible statistical approach to determine the
necessary equity capital to be held by banks to
cover losses due to operational risks. In physical
terms our model resembles a lattice gas with
heterogeneous, functionally defined couplings.
In such a description, bursts and avalanches of
process failures correspond to droplet formation
associated with a first order phase transition.

The paper is organized as follows. In Sect. II
we describe the Value-at-Risk concept for risk
management and control. In Sect. III we de-
scribe the approaches discussed in the context
of Basel II for operational risk measurement. A
new approach based on functionally dependent
correlations giving rise to collective behavior is
introduced in Sect. IV. Finally, Sect. V summa-
rizes our results.

II. THE VALUE-AT-RISK CONCEPT

Risk management in banks is based on diver-
sification, hedging and equity capital as loss
buffer. The bank charges its customers a pre-
mium for its risks so that (expected) losses in
one market segment are on average compen-
sated by profits in others. Other risks, espe-
cially market and increasingly credit risks, are
hedged (insured) via the derivative market. Un-
expected losses, which are not diversified or
hedged, are covered by the bank’s equity capi-
tal. How much capital a bank needs to cover its
risks is determined by the so-called “Value-at-
Risk” (VaR). VaR can be defined as the worst
loss in excess of the expected loss that can
happen under normal market conditions over
a specified horizon T at a specified confidence
level q. More formally, VaR measures the short-
fall from the q-quantile of the loss distribution
in excess of the expected loss, EL, within the
time period T discounted at the risk-free rate r
to time t = 0:

VaRq,T = (Qq[L(T )]− EL) e−rT , (1)

where the q-quantile worst case loss, Qq [L(T )],
is defined at confidence level q through

Prob (L(T ) > Qq [L(T )]) = 1− q . (2)

As indicated in (1), VaR depends on the confi-
dence level q and the risk horizon T . The choice
of these parameters depends on the applica-
tion. If VaR is simply used to report or compare
risks, these parameter can be arbitrarily chosen,
as long they are consistent. If, however, VaR is
used as a basis for setting the amount of equity
capital, the parameters must be chosen with ex-
treme care: the confidence level must reflect the
default probability of the bank within the risk
horizon, and the risk horizon must be related
to the liquidation period of risky assets, recov-
ery time of ill-functioning processes, or, alter-
natively, to the time period necessary to raise
additional funds. This explains why regulators
have chosen a high confidence level of 99% and a
10-day horizon to determine the minimum cap-
ital level for market risks. For credit risks and
capital allocation, banks choose q and T even
higher about 99.95% and one year, respectively.

In the financial industry there exist established
statistical models for market and credit risk.
Statistical models for operational risk start now
to be discussed in the risk management com-
munity, especially in the context of Basel II
[3]. Whereas internal market risk models are
already recognized by regulators and are also
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used in banks for capital allocation, regulators
are much more critical about internal statisti-
cal models for credit and operational risk. This
is clearly less related to the mathematical com-
plexity — although credit and operational risks
are more difficult to model than market risks
— but to problems with respect to input data
which are much harder to validate than in the
case of market risk.

III. INDUSTRY STANDARDS FOR
OPERATIONAL RISK MEASUREMENT

The Basel Committee for Banking Supervision
has proposed three alternative approaches to
operational risk measurement [4]: The “Basic-
Indicator Approach (BIA)”, the “Standardized
Approach (SA)”, and the “Advanced Measure-
ment Approach (AMA)”. In the BIA the re-
quired capital for operational risk is deter-
mined by multiplying a single financial indica-
tor, which is gross income (interest, provision,
trading, and other income) by a fixed percent-
age (called the α-factor). The SA differs from
the latter in that banks are allowed to choose
business line specific weight factors, βk, for the
gross income indicator, Ik, of the kth business
line. The total regulatory capital charge, RC,
is the simple sum of the capital required per
business line,

RC =
∑

k

βk × Ik . (3)

The weight factors α and βk are calibrated such
that the required regulatory capital for opera-
tional risk would be 17 - 20% of the current
regulatory capital on bank average standards.

The AMA consist of three sub-categories: The
“Internal Measurement Approach (IMA)”, the
“Loss Distribution Approach (LDA)” and the
“Scorecard Approach (SCA)”. It is a more ad-
vanced approach as it allows banks to use ex-
ternal and internal loss data as well as internal
expertise.

In the IMA the required capital is calculated
as the sum over multiples of the expected loss
per OR-risk category/business line cell

RC =
∑

i,k

γik ×ELik , (4)

where i is the risk category and k the business
line. The expected loss is quantified as the prod-
uct of the annual OR-event probability, an ex-
posure indicator per business line and risk cate-
gory, and the loss percentage per exposure. All

parameter estimates have to be disclosed to the
supervisors. Since the γ-factor is computed on
an industry based distribution, it will be possi-
ble to adjust the capital charge by a risk profile
index, which accounts for the bank’s specific
risk profile compared to industry.

The LDA and SCA are very similar as both ap-
proaches are based on a statistical VaR-model.
Details of the LDA approach are outlined in
ref. [5]. In both approaches the bank estimates
for each risk category/business line cell the
probability distributions of the annual event
frequency and the loss severity (= exposure ×
loss fraction per exposure). The difference be-
tween the LDA and the SCA is that in the
former only internal or external historical loss
data are used for estimating the distribution
functions. In addition to this, banks are also
allowed to apply expert knowledge to estimate
the distribution functions in the SCA. This is
a forward looking approach. It is particularly
suited for operational risk, as processes that
have failed are usually changed; hence histori-
cal loss data could provide potentially mislead-
ing information. Even if banks have an exhaus-
tive internal database of losses, it can hardly be
considered as representative of extreme losses.
Hence, expert assessments and external loss
databases are necessary. The problem with the
latter data source is that external historical
losses must be scaled to fit the balance sheet
of the bank (it must be possible that the losses
can occur in the bank).

Popular choices for the loss severity distri-
bution functions are the lognormal, Gamma,
Beta, Weibull distribution. Common choices for
the loss frequency distribution function are the
Poisson or negative binomial distribution. In a
top-down approach different OR-risk categories
are assumed to be independent. For each busi-
ness unit and for each OR-category the OR-
loss is simulated in a Monte-Carlo simulation
by drawing a realization Nik from the loss fre-
quency and samplingNik realizations of the loss
severity Xm

ik (m = 1, . . . , Nik). The loss in such
a sample is

Lik =

Nik∑

m=1

Xm
ik . (5)

Drawing a histogram of outcomes of Lik pro-
vides the loss distribution function per risk
category/business line cell. The Value-at-Risk
is read off from the tail in excess to the ex-
pected loss as described in Sect. II. Due to
the assumption of statistical independence, the
loss distribution can also be calculated analyt-
ically as the convolution product of the loss
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frequency and the loss severity distribution.
The required capital for the bank as a whole
can either be calculated as the simple sum-
mation of the capital charges across each of
the risk category/business line cell. This is the
method given by the Basel Committee on Bank-
ing Supervision in the Internal Measurement
Approach. Or, the MC-sampling can be ex-
tended beyond the risk category/business line
cell by L =

∑
i,k Lik, which takes diversification

between the risk category/business line cell into
account.

A critical point which concerns all presently
discussed approaches is the correlation between
OR-losses. In this paper our focus will be how
correlations and dependencies between OR-risk
events can be integrated in the LDA/SCA.

IV. FUNCTIONAL CORRELATION
APPROACH FOR OPERATIONAL RISK

Since Markowitz’s centennial work on portfo-
lio theory [12, 13], diversification and depen-
dencies between risk events are modeled by the
covariance of stochastic processes. Because em-
pirically only the mean and the covariance of
these processes are reliably determined from
market data, it is common practice to choose
correlated Gaussian white noise for modeling
correlations. As a consequence the loss distri-
bution is unimodal with frequent small losses
and a few extreme losses, which — dependent
on the distribution of the loss severity — are
responsible for fat tails in the loss distribution.
Collective losses or even crashes such as burst
and avalanches of losses are not contained in
this description.

A main point in this paper is that this stochas-
tic dependency of risk events is not suffi-
cient for all risk categories: one frequently also
observes direct, functional and non-stochastic
dependencies. Functional dependency between
risk events is most pronounced in operational
risk events. Processes in a (large) organization
are usually organized so as to mutually sup-
port each other. Thus, if a process fails, this
will usually be detrimental to other processes
relying on receiving input or support of some
sort from the failing process in question, so that
they run a higher risk of failing as well. It there-
fore seems inadequate to model operational risk
events individually per risk category/business
line cell and aggregate losses afterwards over
some covariance matrix, which would be the
choice when approaching operational risks anal-

ogously to market risks. In the following we ex-
tend the LDA/SCA by taking the functional
dependencies between processes into account.

We consider a simple two state model here,
i.e., a processes can be either up and running
or down. For the process corresponding to the
OR-event i we designate these states as ni = 0
and ni = 1, respectively. In following we will
skip the business line index k for simplicity.

The interest is in obtaining reliable estimates
of the statistics of processes that are down at
any time and of the statistics of losses incurred
at any time. As the loss severity incurred by
a given process going into the down state may
vary randomly from event to event, solving the
latter problem requires convolving the statistics
of down-events with the loss severity distribu-
tion related to the process failures.

The reliability of individual processes will vary
(randomly) across the set of processes, and so
will the degree of functional interdependence.
These random heterogeneities constitute an el-
ement of quenched disorder, whereas the loss
severities incurred by down processes consti-
tute an element of annealed disorder as they are
(randomly) determined anew from their distri-
bution each time a process goes down. An ap-
pealing feature for the modeler of operational
risks therefore is the independence of the dy-
namic model of the interacting processes and
the loss severity model (i.e. the estimate of the
PDFs of loss severity incurred by individual
process failures.) A typical assumption for the
latter is to take them as being distributed ac-
cording to a log-normal distribution with suit-
able parameters for means and variances, which
we will choose in the following.

A. Dynamics

To motivate the dynamics of the functional
approach, note that all processes need a cer-
tain amount of “fueling” or support in order
to maintain a functioning state for the time in-
crement t → t + ∆t within the risk horizon,
t ∈ [0, T ) (think of human resources, informa-
tion, input from other processes, etc.). Here,
only the generic features of the model shall be
outlined. Hence, the increment ∆t is chosen
such that all processes can fully recover within
this time interval, i.e., the state ni of each pro-
cess can flip each time step. For practical appli-
cations in banks, one would model the recovery
process more carefully: specific death-period af-
ter the failure of the ith process would be con-
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sidered, and one would differentiate between
process failures being discovered and adjusted
up to a certain cut-off time, e.g., end-of-day,
at which a process would have been completed
[6]. These features are not generic and can only
be discussed related a specific OR-event under
consideration.

We denote by hi(t) the total support received
by process i at time t, and choose it to take the
form

hi(t) = ϑi −
∑

j

wijnj(t) + ηi(t) . (6)

That is, it is composed of (i) the average to-
tal support ϑi that would be provided by a
fully operational network of processes (in which
ni(t) = 0 for all i). This quantity is (ii) di-
minished by support that is missing because of
failing processes which normally feed into the
process in question; (iii) lastly, there are fluc-
tuations about the average which we take to
be correlated Gaussian white noise with — by
proper renormalizing ϑi and wij — zero mean
and unit variance. Correlated Gaussian noise is
introduced to model equal-time cross correla-
tions between OR-risk categories in analogy to
the approach proposed by the Basel Committee
for Banking Supervision for credit risk,

ηi(t) =
√
ρ Y (t) +

√
1− ρ εi(t) , (7)

where Y (t) ∼ N (0, 1) is a common factor for
all OR-risk categories with equal-time correla-
tion coefficient ρ, and the εi(t) ∼ N (0, 1) are
idiosyncratic terms.

Note that non-linear effects could be included
by modifying (6) to hi(t) = ϑi−

∑
j wijnj(t)−∑

j,k wijknj(t)nk(t)−. . .+ηi(t). Note also that,
as in credit risk modeling, the common fac-
tor
√
ρ Y (t) could further be decomposed into

sector-contributions
√
ρ Y (t)→∑

k βikYk(t) so
as to describe more complicated equal-time cor-
relations. To keep this treatment transparent,
we will present the formalism without these ex-
tensions.

Process i will fail in the next time instant
t + ∆t, if the total support for it falls below
a critical threshold. By properly renormalizing
ϑi, we can choose this threshold to be zero, thus
(Θ is the step-function: Θ(x) = 1 for x ≥ 0 and
0 else)

ni(t+ ∆t) = Θ
(
− ϑi +

∑

j

wijnj(t)

−√ρ Y (t)−
√

1− ρ εi(t)
)
.(8)

The losses incurred by process i are then up-
dated according to

Li(t + ∆t) = Li(t) + ni(t + ∆t)Xi
t+∆t , (9)

where Xi
t+∆t is randomly sampled from the loss

severity distribution for process i. Note that
the process dynamics is independent of assump-
tions concerning their loss severity distributions
within the present model.

One can integrate over the distribution of id-
iosyncratic noises to obtain the conditional
probability for failure of process i given a con-
figuration n(t) = {ni(t)} of down-processes and
a realization of the common factor Y (t) at time
t,

〈ni(t+ ∆t)〉n(t),Y (t)

≡ Prob
(
ni(t+ ∆t) = 1

∣∣∣n(t), Y (t)
)

(10)

= Φ

(
Φ−1(pi) +

∑
j wij nj(t)−

√
ρ Y (t)

√
1− ρ

)
.

Here Φ(x) denotes the cumulative normal
distribution. Note that we have set ϑi =
−Φ−1(pi), where pi,∆t ≡ pi is the uncondi-
tional expected probability for process failures
within the time-increment ∆t. This is consis-
tently justified by setting nj(t) = 0 for all j and
ρ = 0 in Eq. (10). Note that up to the functional
term “

∑
j wij nj(t)” this approach corresponds

to the approach adapted by the Basel Commit-
tee for Banking Supervision for credit risk [4].

The couplings wij can be determined by con-
sidering the transition probabilities, pij,∆t ≡
pij, for process i failure within the time-
increments ∆t, given that in the configuration
at time t process j is down, whereas all other
processes are running, and Y (t) = 0. Introduc-
ing the shorthand Cj for this configuration, we
can write

pij = Prob
(
ni(t+ ∆t) = 1

∣∣∣ Cj
)

= Φ
(Φ−1(pi) + wij√

1− ρ
)
. (11)

This leads to

wij =
√

1− ρΦ−1(pij)− Φ−1(pi) . (12)

Analogous identities would be available for de-
termining higher order connections wijk, if non-
linear effects were taken into account. Note that
the probabilities for process failure depend only
on the increment ∆t and not on the time t due
to the stationarity of the dynamics.
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To illustrate how these parameter are fixed in
practice, consider the following. Either from a
historical loss database, or from an expert as-
sessment the following two questions must be
answered per OR-risk category and business
line:

1. What is the expected period, 〈τi〉, until
process i fails for the first time in a fully
operative environment, and

2. given that only process j has failed, what
is the expected period, 〈τij〉, for process i
to fail also?

Noting that with Prob(failure at z∆t) =
(
1−

pi
)z−1

pi one finds that

〈τi〉 =

∞∑

z=1

z∆t
(
1− pi

)z−1
pi =

∆t

pi
, (13)

and analogously,

〈τij〉 =
∞∑

z=1

z∆t
(
1− pij

)z−1
pij =

∆t

pij
. (14)

These identities express the pi and pij in terms
of estimated average times of failure, and are
used to fix the model parameters completely.
Note that according to (11) pij can be inter-
preted as a non-equal time correlation for pro-
cess failures.

Note also that, incidentally, the dynamics (8)
resembles that of a lattice gas (defined on a
graph rather than on a lattice), the ni denoting
occupancy of a vertex, the wij interactions, and
ϑi taking the role of chemical potentials regu-
lating a-priori occupancy of individual vertices.
The present system is heterogeneous in that (i)
the ϑi vary from site to site, (ii) the couplings
wij have a functional rather than regular geo-
metric dependence on the indices i and j des-
ignating the vertices of the graph. Moreover, in
the physics context, one usually assumes noise
sources other than Gaussian so that cumulative
probabilities are described by Fermi-functions
rather than cumulative normal distributions as
above. The quantitative difference is minute,
however.

The model dynamics as such cannot be solved
analytically for a general heterogeneous net-
work. We shall resort to Monte-Carlo simula-
tions to study its salient properties. The main
qualitative features can, however, also be ob-
served in the simplified situation of a homoge-
neous network consisting of identical processes,
having the same connectivity at each node. A

mean-field analysis of such a simplified situa-
tion will be given as well. As the presence of
the common factor expressed by the ρ-term in
Eq. (7) would influence only quantitative de-
tails of the system’s behavior, we will further
present the analysis without correlation to the
common factor by setting ρ ≡ 0.

B. Key Features

Key features of the collective behavior of net-
works of interacting processes can easily be an-
ticipated either directly from a discussion of the
dynamic rules, or from the analogy with the
physics of lattice gasses.

Consider a network in which the unconditional
probabilities for process failures, pi, are small,
but process interdependence is large and con-
sequently conditional probabilities for process
failures, pij, are sizeable. In such a situation,
spontaneous failure of individual processes may
induce subsequent failures of other processes
with sufficiently high probability so as to trig-
ger a breakdown of the whole network. If, on
the other hand, process interdependence re-
mains below a critical threshold value, indi-
vidual spontaneous failures will not have such
drastic consequences, and the whole network
will remain in a stable overall functioning state.

Of particular interest for the risk manager is
the case, in which process interdependence is
low enough to make a self-generated break-down
of the network extremely unlikely, but parame-
ters are nevertheless such that a stable over-
all functioning state of the network coexists
with a phase in which nearly the complete net-
work is in the down state (two phase coexis-
tence). In such a situation, it may be exter-
nal strain which can induce a transition from
a stably functional situation to overall break-
down. Analogous mechanisms are believed to be
responsible for occasional catastrophic break-
downs in bistable ecosystems [14].

With increasing unconditional probabilities for
process failures it becomes meaningless to dis-
tinguish between an overall functioning, and
a non-functioning phase of the network, two–
phase coexistence ceases to exist — as in (lat-
tice) gasses — at a critical point.

C. Simulations

In the following we validate some of our in-
tuitions about global network behavior using
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Monte-Carlo simulations.

The Monte-Carlo dynamics can either be con-
ceived as parallel dynamics (all ni are at each
time step simultaneously updated according to
(8) or (10)), or as (random) sequential dynam-
ics (only a single ni is (randomly) selected for
update according to (8) in any given time-step,
in which case the time increment must scale
with the number N of processes in the net as
∆t ∼ N−1).

For the analysis of operational risks, losses are
accumulated during a Monte-Carlo simulation
of the process dynamics over the risk horizon,
T . Runs over many risk horizons then allow to
measure loss distribution functions for individ-
ual processes within the network of interacting
processes, or of business units or the full net-
work by appropriate summations.

For the simulations, we choose a random set-
ting, i.e., unconditional failure probabilities are
taken to be homogeneously distributed in the
interval [0, pmax] and we determine random con-
ditional failure probabilities as pij = pi(1+εij),
with εij homogeneously distributed in [0, εmax],
which fixes the ratio (pij/pi)

max.

Fig. 1 shows a situation where a functional net-
work coexists with a situation in which the net-
work is completely down, and parameters are
such that spontaneous transitions between the
phases are not observed during a simulation.
The upper track shows the loss record of a sys-
tem initialized in the “all down” state whereas
the lower track exhibits the loss record of the
same network initialized in the fully function-
ing state.

The loss distribution for the functional net-
work is unimodal with a bulk of small losses and
a fat tail of extreme losses, which are driven by
the loss severity distribution.

By increasing the functional interdependence
at unaltered unconditional failure probabilities,
the functioning state of the network becomes
unstable. A spontaneous transition into the
‘down’ state is observed during a single run of
50000 Monte-Carlo steps. Two interesting fea-
tures about this transition to complete break-
down deserve mention: (i) the time to break-
down can vary within very wide limits (we have
not attempted to measure the distribution of
times to breakdown and its evolution with sys-
tem parameters such as range of values for con-
ditional failure probabilities), (ii) there are no
detectable precursors to the transition; it oc-
curs due to large spontaneous fluctuations car-
rying the system over a barrier, in analogy to

droplet formation associated with first order
phase transitions.

We should like to emphasize that realistically
the system dynamics after an overall break-
down of a process network would no longer be
the spontaneous internal network dynamics: re-
covery efforts would be started, increasing sup-
port for each process by a sufficient amount
such as to reinitialize the network in working
order.

Repeated spontaneous transitions in both di-
rections can be observed only in a rather small
network (Fig. 2). The corresponding loss distri-
bution will be bimodal.

Fig. 3 illustrates the principle of a strain-
simulation. In each case, the system, if in the
operational state, is repeatedly put under ex-
ternal strain by turning off 5 randomly selected
functioning processes every 1000th time step,
and letting the system evolve under its internal
dynamics thereafter. Such a disturbance can ei-
ther trigger a breakdown of the system or not.
In the former case, if the system is found fully
down 1000 time steps later, it is reinitialized in
the fully operational state and once more dis-
turbed 1000 steps later.

One observes that the operational low-loss
phase which we have seen in Fig. 1 to co-
exist with the non-operational phase is re-
silient against disturbances of the kind de-
scribed above. The same is true if (pij/pi)

max

is increased to 2.7. At (pij/pi)
max = 2.8 an ex-

ternal strain succeeds once during the simula-
tion to trigger breakdown of the net, whereas
at (pij/pi)

max = 2.9 breakdown under exter-
nal strain of the given strength is the regular
response of the system (with a few exceptions
and occasional spontaneous recoveries).

Of interest to the risk manager in the end are
the total losses accumulated over a risk horizon,
T ,

L(T ) =
∑

i

Li(T ) , (15)

more specifically, the corresponding probabil-
ity density function. Fig. 4 presents such dis-
tribution of accumulated losses for a network
that remains operational throughout the sim-
ulation. For this simulation we have chosen
T = 365∆t. The loss distribution has an ex-
tended tail (barely visible on the scale of the
data, with a 99.5% quantile at 1400, and the
largest aggregated loss observed during the sim-
ulation over a time span of T at 3400, i.e. by a
factor of more than 3 larger than the expected
loss for the chosen risk horizon T .
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FIG. 1: Loss record for a system of N = 50 inter-
acting processes with (first panel) pmax = 0.02 and
(pij/pi)

max = 2.6. The low-loss situation coexists
with a high-loss situation; although a spontaneous
total breakdown of the operational system into the
non-operational high-loss phase does not occur dur-
ing the simulation, external influences may well in-
duce such a transition. The second panel has the
same pmax but (pij/pi)

max = 3. The low-loss sit-
uation is unstable and spontaneously decays to a
high-loss situation via a bubble-nucleation process.
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FIG. 2: In a small system (N = 10), repeated
changes between high- and low-loss situations can
be observed.
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FIG. 3: Strain simulations described in the main
text. The parameters are pmax = 0.02 as in the
previous figures and (pij/pi)

max = 2.6, 2.7, 2.8, and
2.9.
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FIG. 4: Frequency distribution of aggregated num-
ber of down-processes during a risk horizon of
T = 365∆t (first); loss distribution (second panel).
Total time covered was 104T . Histograms are not
normalized. Parameters of the system are N = 50,
pmax = 0.02, and (pij/pi)

max = 2.5, loss severity
distributions are taken as log-normal, with means
randomly spread over an interval [0,10] and volatil-
ities chosen randomly as a factor of their respective
means, the maximum factor being 0.4.

D. Mean-field Solution

The principle dynamic properties of the model
exist independently of its heterogeneous na-
ture. To exhibit systematic relations between
dynamic features and model parameters, we
shall elucidate them in the simplified setting of
a homogeneous network of identical processes,
which we analyze within a mean-field approxi-
mation.

For this we assume a homogeneous coupling,
wij −→ w0/z and pij −→ pw, where z is the
coordination number of the graph (taken to
be identical at each vertex), and replace time–
dependent quantities in Eq. (10) by long-time
stationary averages, nj(t) −→ 〈nj(t)〉. In a ho-
mogeneous system, averages are independent of
the process index i and time, such that pi −→ p
and 〈nj(t)〉 −→ n. This gives the mean-field

equation (without correlation to the common
factor, ρ ≡ 0)

n = Φ
(
Φ−1(p) + w0 n

)
. (16)

Depending on p and the average coupling
strength, w0, this equation has either one
unique solution or three solutions, with one un-
stable solution at intermediate n, and two sta-
ble solutions, n ≈ 0 or 1. Figure 5 shows stable
and unstable solutions as functions of w0 and
pw for a given value of p.

The phase diagram (Fig. 6) summarizes re-
gions in the p–w0 plane, where operational and
non-operational phases of the network coexist
showing limits of stability of the low-loss and
high-loss solution. For p exceeding a critical
value pc ' 0.0218 there is a unique disordered
phase with relatively large values of n.

For a sufficiently small unconditional failure
probability p an initially running process net-
work will for weak functional dependence re-
main in the running state, despite of sponta-
neous individual process failures. Such a net-
work is in a functioning state.

For stronger functional correlation the func-
tional state of the network becomes unstable.
Fluctuations in the number of processes that
are down at any given time can trigger a burst
or avalanche of failures — a collective phe-
nomenon corresponding to droplet formation
associated with a first order phase transition.

For intermediate degrees of functional depen-
dence, the network allows for two (meta)stable
states, an operational and a non-operational
network. While spontaneous fluctuations in the
number of failing processes will in large net-
works fail to trigger transitions between the two
states, external strain may well do, as demon-
strated in the strain simulations above. Seen
from the functioning side, the closer the param-
eters are to an instability line, the smaller the
strain needed to trigger avalanches of failures
leading to the fully defunct state of the system.
This behavior is quantified by the susceptibil-
ity χ (Fig. 7). With support for each process
decreasing by an amount δh < 0, the fraction
of down processes will change by

δn ' χ(w0, p) δh (17)

with

χ(w0, p) = − 1

1− w0Φ′(Φ−1(p) + w0n))
, (18)

where Φ′(x) = 1√
2π

exp[−x2/2]. Note that the

susceptibility is proportional to the sensitivity
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FIG. 5: Mean-field solution for the average fraction
n of down-processes for p ' 0.02 as a function of the
coupling parameter. The back-turning part is the
unstable solution nu(w0). For n > nu the system is
driven towards the non-operational high-n solution,
as long as n < nu, the system is driven back to the
operational low-n solution. In the second panel w0

is translated into a conditional probability pw under
the assumption that the coordination is z = 4 (right
curve) and z = 8 (left curve).

of the fraction of down-processes with respect
to the unconditional probability of process fail-
ure.

Triggering complete failures becomes easier
close to instability lines for two reasons: (i)
the susceptibility diverges as instability lines
are approached; (ii) the unstable solution nu is
closer to the stable equilibrium solution; exter-
nal strain only needs to push the system beyond
nu to destabilize the functioning state.

Such a regime could therefore be dangerous for
a network of mutually supporting processes in
a bank. Due to the long periods in one of the
metastable states, the bank would not neces-
sarily realize the potential of big losses due to
bursts and avalanches of process failures. With
a basically unchanged process setup the net-
work could collapse and cause significant losses,
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FIG. 6: Mean-field phase diagram for the homoge-
neous interacting processes system. At low p opera-
tional and non-operational process networks coex-
ist, separated by a discontinuous phase transition.
Shown are couplings wc0 corresponding to spinodals
which mark instabilities of fully operational low-
loss and non-operational high-loss situations (up-
per and lower curves, respectively). Note that hys-
teresis effects are implied. The spinodals merge in
a critical endpoint, where the transition is second
order.

0 0.05 0.1 0.15
pw

0

10

20

χ

FIG. 7: Susceptibility of the mean-field solution for
p ' 0.02 as a function of pw for the homogeneous
interacting processes system at z = 8. The suscep-
tibility diverges as the spinodal is approached.

either due to external strain or rare fluctuations
of internal dynamics. Owing to the stability of
the metastable states, the bank will then have
to spend a lot of efforts in order to bring the
network back to a functional state, which will
cause additional costs.

V. CONCLUSION

In this paper we have outlined how ideas from
physics of collective phenomena and phase tran-
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sitions can naturally be applied to model build-
ing for operational risk in financial institutions.
Our main point was that functional correlations
between mutually supportive processes give rise
to non-trivial temporal correlation, which could
eventually lead to the collective occurrence of
risk event in form of burst, avalanches and
crashes. For risks associated to process fail-
ure (operational risks) a functional dependence
seems to be the appropriate way for modeling
sequential correlations.

From the physics point of view, the appropri-
ate model is rather simple, being a heteroge-
neous variant of the well studied lattice gas
model. Despite the heterogeneities, it has a first
order phase transition (driven by average in-
teraction strength) at sufficiently low average
a-priori probability of process failures, show-
ing coexistence between an overall functioning
state (gas) and a state of catastrophic break-
down (liquid). As the a-priori probability of
process failures is increased the first order tran-
sition ends at a (liquid/gas) critical point.

One of the most critical lessons for Risk Con-
trol from our analysis is the possible metasta-
bility of networks of interacting processes: The
bank would not necessarily realize the poten-
tial of big losses due to bursts and avalanches
of process failures, as there are no detectable
precursors to such transitions. With a basically

unchanged process setup the network could col-
lapse and cause significant losses, either due
to external strain or rare fluctuations of in-
ternal dynamics. Owing to the stability of the
metastable states, the bank will then have to
spend a lot of efforts in order to bring the
network back to a functional state, which will
cause additional costs. To assess the metasta-
bility banks have to perform stress tests.

It should be noted that realistically the sys-
tem dynamics after an overall break-down of a
process network would no longer be the sponta-
neous internal network dynamics: recovery ef-
forts would be started, increasing support for
each process by a sufficient amount such as to
reinitialize the network in working order.

In a forthcoming publication we will also show
that the random walk model for financial time
series commonly used in banks can naturally
be extended to incorporate functional depen-
dencies leading to collective effects. This will
lead to models which, while bearing some re-
semblance with agent-based models of markets
(see, e.g., [15]) are different from them in other
respects [16].
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